Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38545622

RESUMO

We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS: ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.

2.
Cell Host Microbe ; 31(11): 1850-1865.e5, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909048

RESUMO

The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Proteínas do Envelope Viral/genética , Glicoproteínas , Vacinação
3.
mBio ; 14(5): e0081823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800919

RESUMO

IMPORTANCE: The four dengue virus (DENV) serotypes infect several hundred million people each year. Although primary infection is generally mild, subsequent infection by differing serotypes increases the risk for symptomatic disease ranging from fever to life-threatening shock. Despite the availability of licensed vaccines, a comprehensive understanding of antibodies that target the viral envelope protein and protect from infection remains incomplete. In this manuscript, we develop a panel of recombinant viruses that graft each envelope domain of DENV2 onto the DENV4 envelope glycoprotein, revealing protein interactions important for virus viability. Furthermore, we map neutralizing antibody responses after primary DENV2 natural infection and a human challenge model to distinct domains on the viral envelope protein. The panel of recombinant viruses provides a new tool for dissecting the E domain-specific targeting of protective antibody responses, informing future DENV vaccine design.


Assuntos
Vírus da Dengue , Dengue , Humanos , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Sorogrupo , Anticorpos Neutralizantes
4.
Sci Transl Med ; 15(695): eadg7404, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163615

RESUMO

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Camundongos , Anticorpos Amplamente Neutralizantes , Vacinas contra COVID-19 , Macaca , SARS-CoV-2 , COVID-19/prevenção & controle , Imunização , Vacinação , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
medRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066219

RESUMO

Individuals with weaker neutralizing responses show reduced protection with SARS-CoV-2 variants. Booster vaccines are recommended for vaccinated individuals, but the uptake is low. We present the feasibility of utilizing point-of-care tests (POCT) to support evidence-based decision-making around COVID-19 booster vaccinations. Using infectious virus neutralization, ACE2 blocking, spike binding, and TCR sequencing assays, we investigated the dynamics of changes in the breadth and depth of blood and salivary antibodies as well as T-cell clonal response following mRNA vaccination in a cohort of healthcare providers. We evaluated the accuracy of two POCTs utilizing either blood or saliva to identify those in whom humoral immunity was inadequate. >4 months after two doses of mRNA vaccine, SARS-CoV-2 binding and neutralizing Abs (nAbs) and T-cell clones declined 40-80%, and 2/3rd lacked Omicron nAbs. After the third mRNA booster, binding and neutralizing Abs increased overall in the systemic compartment; notably, individuals with previously weak nAbs gained sharply. The third dose failed to stimulate secretory IgA, but salivary IgG closely tracked systemic IgG levels. Vaccine boosting increased Ab breadth against a divergent bat sarbecovirus, SHC014, although the TCR-beta sequence breadth was unchanged. Post 3rd booster dose, Ab avidity increased for the Wuhan and Delta strains, while avidity against Omicron and SHC014 increased to levels seen for Wuhan after the second dose. Negative results on POCTs strongly correlated with a lack of functional humoral immunity. The third booster dose helps vaccinees gain depth and breadth of systemic Abs against evolving SARS-CoV-2 and related viruses. Our findings show that POCTs are useful and easy-to-access tools to inform inadequate humoral immunity accurately. POCTs designed to match the circulating variants can help individuals with booster vaccine decisions and could serve as a population-level screening platform to preserve herd immunity. One Sentence Summary: SARS-CoV-2 point-of-care antibody tests are valuable and easy-to-access tools to inform inadequate humoral immunity and to support informed decision-making regarding the current and future booster vaccination.

6.
Nat Commun ; 14(1): 1371, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914616

RESUMO

The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity. Among the number of vaccine candidates in clinical trials, only Dengvaxia is licensed for use in DENV seropositive individuals. To simplify live-virus vaccine design, we identify co-evolutionary constraints inherent in flavivirus virion assembly and design chimeric viruses to replace domain II (EDII) of the DENV2 envelope (E) glycoprotein with EDII from DENV4. The chimeric DENV2/4EDII virus replicates efficiently in vitro and in vivo. In male macaques, a single inoculation of DENV2/4EDII induces type-specific neutralizing antibodies to both DENV2 and DENV4, thereby providing a strategy to simplify DENV vaccine design by utilizing a single bivalent E glycoprotein immunogen for two DENV serotypes.


Assuntos
Vírus da Dengue , Dengue , Masculino , Humanos , Vírus da Dengue/genética , Anticorpos Antivirais , Sorogrupo , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes
7.
Database (Oxford) ; 20232023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763096

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities. To collect these data in a consistent fashion and make it publicly available, we established the COVIC database (COVIC-DB, https://covicdb.lji.org/). This database enables systematic analysis and interpretation of this large-scale dataset by providing a comprehensive view of various features such as affinity, neutralization, in vivo protection and effector functions for each antibody. Interactive graphs enable direct comparisons of antibodies based on select functional properties. We demonstrate how the COVIC-DB can be utilized to examine relationships among antibody features, thereby guiding the design of therapeutic antibody cocktails. Database URL  https://covicdb.lji.org/.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Anticorpos Antivirais , Imunoterapia
8.
Viruses ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851745

RESUMO

New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Monoclonais , Antivirais
9.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711543

RESUMO

The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (∼4.4%) antibodies isolated at 1.4∼6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies. One Sentence Summary: Extremely potent pan-sarbecovirus neutralizing antibodies.

10.
Sci Transl Med ; 15(685): eadd6383, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36454813

RESUMO

The U.S. Food and Drug Administration only gave emergency use authorization of the BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines for infants 6 months and older in June 2022. Yet questions regarding the durability of vaccine efficacy, especially against emerging variants, in this age group remain. We demonstrated previously that a two-dose regimen of stabilized prefusion Washington SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or purified S-2P mixed with 3M-052, a synthetic Toll-like receptor (TLR) 7/8 agonist, in a squalene emulsion (Protein+3M-052-SE) was safe and immunogenic in infant rhesus macaques. Here, we demonstrate that broadly neutralizing and spike-binding antibodies against variants of concern (VOCs), as well as T cell responses, persisted for 12 months. At 1 year, corresponding to human toddler age, we challenged vaccinated rhesus macaques and age-matched nonvaccinated controls intranasally and intratracheally with a high dose of heterologous SARS-CoV-2 B.1.617.2 (Delta). Seven of eight control rhesus macaques exhibited severe interstitial pneumonia and high virus replication in the upper and lower respiratory tract. In contrast, vaccinated rhesus macaques had faster viral clearance with mild to no pneumonia. Neutralizing and binding antibody responses to the B.1.617.2 variant at the day of challenge correlated with lung pathology and reduced virus replication. Overall, the Protein+3M-052-SE vaccine provided superior protection to the mRNA-LNP vaccine, emphasizing opportunities for optimization of current vaccine platforms. The observed efficacy of both vaccines 1 year after vaccination supports the implementation of an early-life SARS-CoV-2 vaccine.


Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , Lactente , SARS-CoV-2 , Vacinas contra COVID-19 , Macaca mulatta , Vacina BNT162 , Anticorpos Antivirais , Anticorpos Neutralizantes
11.
JAMA Netw Open ; 5(8): e2226335, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947380

RESUMO

Importance: Antibody responses elicited by current messenger RNA (mRNA) COVID-19 vaccines decline rapidly and require repeated boosting. Objective: To evaluate the immunogenicity and durability of heterologous and homologous prime-boost regimens involving the adenovirus vector vaccine Ad26.COV2.S and the mRNA vaccine BNT162b2. Design, Setting, and Participants: In this cohort study at a single clinical site in Boston, Massachusetts, 68 individuals who were vaccinated at least 6 months previously with 2 immunizations of BNT162b2 were boosted with either Ad26.COV2.S or BNT162b2. Enrollment of participants occurred from August 12, 2021, to October 25, 2021, and this study involved 4 months of follow-up. Data analysis was performed from November 2021 to February 2022. Exposures: Participants who were previously vaccinated with BNT162b2 received a boost with either Ad26.COV2.S or BNT162b2. Main Outcomes and Measures: Humoral immune responses were assessed by neutralizing, binding, and functional antibody responses for 16 weeks following the boost. CD8+ and CD4+ T-cell responses were evaluated by intracellular cytokine staining assays. Results: Among 68 participants who were originally vaccinated with BNT162b2 and boosted with Ad26.COV2.S (41 participants; median [range] age, 36 [23-84] years) or BNT162b2 (27 participants; median [range] age, 35 [23-76] years), 56 participants (82%) were female, 7 (10%) were Asian, 4 (6%) were Black, 4 (6%) were Hispanic or Latino, 3 (4%) were more than 1 race, and 53 (78%) were White. Both vaccines were found to be associated with increased humoral and cellular immune responses, including against SARS-CoV-2 variants of concern. BNT162b2 boosting was associated with a rapid increase of Omicron neutralizing antibodies that peaked at a median (IQR) titer of 1018 (699-1646) at week 2 and declined by 6.9-fold to a median (IQR) titer of 148 (95-266) by week 16. Ad26.COV2.S boosting was associated with increased Omicron neutralizing antibodies titers that peaked at a median (IQR) of 859 (467-1838) week 4 and declined by 2.1-fold to a median (IQR) of 403 (208-1130) by week 16. Conclusions and Relevance: Heterologous Ad26.COV2.S boosting was associated with durable humoral and cellular immune responses in individuals who originally received the BNT162b2 vaccine. These data suggest potential benefits of heterologous prime-boost vaccine regimens for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Adulto , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Humanos , Masculino , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
12.
medRxiv ; 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36032965

RESUMO

To evaluate SARS-CoV-2 variants we isolated SARS-CoV-2 temporally during the pandemic starting with first appearance of virus in the Western hemisphere near Seattle, WA, USA, and isolated each known major variant class, revealing the dynamics of emergence and complete take-over of all new cases by current Omicron variants. We assessed virus neutralization in a first-ever full comparison across variants and evaluated a novel monoclonal antibody (Mab). We found that convalescence greater than 5-months provides little-to-no protection against SARS-CoV-2 variants, vaccination enhances immunity against variants with the exception of Omicron BA.1, and paired testing of vaccine sera against ancestral virus compared to Omicron BA.1 shows that 3-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a 2-dose regimen. We also reveal a novel Mab that effectively neutralizes Omicron BA.1 and BA.2 variants over clinically-approved Mabs. Our observations underscore the need for continued vaccination efforts, with innovation for vaccine and Mab improvement, for protection against variants of SARS-CoV-2. Summary: We isolated SARS-CoV-2 temporally starting with emergence of virus in the Western hemisphere. Neutralization analyses across all variant lineages show that vaccine-boost regimen provides protection against Omicron BA.1. We reveal a Mab that protects against Omicron BA.1 and BA.2 variants.

13.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476513

RESUMO

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções por Coronavirus/epidemiologia , Suínos
14.
Sci Immunol ; 6(60)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131024

RESUMO

The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Macaca mulatta , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia
15.
bioRxiv ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851156

RESUMO

Early life SARS-CoV-2 vaccination has the potential to provide lifelong protection and achieve herd immunity. To evaluate SARS-CoV-2 infant vaccination, we immunized two groups of 8 infant rhesus macaques (RMs) at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein, either encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or mixed with 3M-052-SE, a TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. High magnitude S-binding IgG and neutralizing infectious dose 50 (ID 50 ) >10 3 were elicited by both vaccines. S-specific T cell responses were dominated by IL-17, IFN- γ , or TNF- α . Antibody and cellular responses were stable through week 22. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines are promising pediatric SARS-CoV-2 vaccine candidates to achieve durable protective immunity. ONE-SENTENCE SUMMARY: SARS-CoV-2 vaccines are well-tolerated and highly immunogenic in infant rhesus macaques.

16.
Cell Rep ; 33(1): 108226, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027653

RESUMO

Dengue virus (DENV) infects an estimated 390 million people each year worldwide. As tetravalent DENV vaccines have variable efficacy against DENV serotype 2 (DENV2), we evaluated the role of genetic diversity within the pre-membrane (prM) and envelope (E) proteins of DENV2 on vaccine performance. We generated a recombinant DENV2 genotype variant panel with contemporary prM and E isolates that are representative of global genetic diversity. The DENV2 genotype variants differ in growth kinetics, morphology, and virion stability. Importantly, the DENV2 genotypic variants are differentially neutralized by monoclonal antibodies, polyclonal serum neutralizing antibodies from DENV2-infected human subjects, and vaccine-elicited antibody responses from the TV003 NIH DENV2 monovalent and DENV tetravalent vaccines. We conclude that DENV2 prM and E genetic diversity significantly modulates antibody neutralization activity. These findings have important implications for dengue vaccines, which are being developed under the assumption that intraserotype variation has minimal impact on neutralizing antibodies.


Assuntos
Anticorpos Neutralizantes/metabolismo , Vírus da Dengue/genética , Vacinação/métodos , Variação Antigênica , Genótipo , Humanos
17.
Cell Host Microbe ; 27(5): 710-724.e7, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32407709

RESUMO

The rational design of dengue virus (DENV) vaccines requires a detailed understanding of the molecular basis for antibody-mediated immunity. The durably protective antibody response to DENV after primary infection is serotype specific. However, there is an incomplete understanding of the antigenic determinants for DENV type-specific (TS) antibodies, especially for DENV serotype 3, which has only one well-studied, strongly neutralizing human monoclonal antibody (mAb). Here, we investigated the human B cell response in children after natural DENV infection in the endemic area of Nicaragua and isolated 15 DENV3 TS mAbs recognizing the envelope (E) glycoprotein. Functional epitope mapping of these mAbs and small animal prophylaxis studies revealed a complex landscape with protective epitopes clustering in at least 6-7 antigenic sites. Potently neutralizing TS mAbs recognized sites principally in E glycoprotein domains I and II, and patterns suggest frequent recognition of quaternary structures on the surface of viral particles.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Sorogrupo , Adolescente , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Criança , Pré-Escolar , Chlorocebus aethiops , Vacinas contra Dengue , Vírus da Dengue/genética , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Camundongos , Modelos Moleculares , Nicarágua , Alinhamento de Sequência , Células Vero , Proteínas do Envelope Viral/imunologia , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...